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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information Systems (RICIS} in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCLbeginning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and cducatlonal facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the governmcnt, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual Interest

to its sponsors and researchers. Within UHCL, the mission is being

Implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, tluman Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

Industry.

Moreover, UHCL established relationships with other univcrsitics and re-

search organizations, having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UItCL

has entered Into a special partnership with Texas A&M University to help

oversee RICIS research and education programs, while other research

organizations are Involved via the "gateway" concepL

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and Informs-

Lion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results Into the goals of UI [CL, NASA/JSC and industry.
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Summary

This final report documents the first-year research efforts for developing
on-off pulse control techniques for flexible space vehicles which are
sometimes required to maneuevr as quickly as possible with a minimum of
structural vibrations during and/or a maneuver, particularly, in the presence
of structural mode uncertainty.

The study objective was to explore the feasibility of computing open-loop,
on-off pulse control logic for uncertain flexible spacecraft. The results
indicate that the proposed robustification or desensitization approach does
generate robust on-off pulse sequences for uncertain flexible spacecraft.

On the contrary to a common notion, the results show that properly
coordinated, on-off pulse sequences can achieve a fast maneuvering time with
a minimum of structural vibrations during and/or after a maneuver, even in
the face of spacecraft modeling uncertainty. The time-optimal responses have
been desensitized at the expense of the increased maneuvering time.
However, it is emphasized that simply prolonging the maneuver time does
not help to reduce residual structural vibrations caused by modeling
uncertainty; a proper coordination of pulse sequences is necessary.
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A Comparison between Robustified Feedforward and

Feedback Control for Performance Robustness

Bong Wie" and Qiang Liu t

Arizona State University

Tempe, Arizona

Abstract

Both feedforward and feedback control approaches for uncertain dynamical sys-

tems (in particular, with uncertainty in structural mode frequency) are investigated.

The control objective is to achieve a fast settling time (high performance) and ro-

bustness (insensitivity) to plant uncertainty. Preshaping of an ideal, time-optimal

control input using a tapped-delay filter is shown to provide a fast settling time with

robust performance. A robust, non-minimum-phase feedback controller is synthe-

sized with particular emphasis on its proper implementation for a non-zero set-point

control problem. It is shown that a properly designed, feedback controller performs

well, as compared with a time-optimal open-loop controller with special preshaping

for performance robustness.

*Associate Professor, Dept. of Mechanical and Aerospace Engineering, Associate Fellow AIAA.
tGraduate Research Assistant, Student Member AIAA.



1. Introduction

Flexible structures, including robot manipulators and optical pointing systems in

space, are sometimes required to reorient or reposition as quickly as possible with a

minimum of residual structural vibrations. The control task for such systems becomes

more difficult if they have many flexible modes within the rigid-body control band-

width. The rapid maneuvering control problem of flexible dynamical systems has

been investigated by many researchers, and various feedforward/feedback approaches

for minimizing residual structural vibrations have been developed (e.g, see [1-9]).

The basic idea behind the various feedforward approaches is to find an input forc-

ing function (e.g, such as a versine function) which begins and ends with zero slope

so that structural modes are less likely to be excited. Such an input function, how-

ever, does not fully utilize the available maximum maneuvering force, and results

in a slower response time and also residual structural vibrations. Most feedforward

approaches (in particular, an open-loop optimal approach) require accurate modeling

of the system and thus are not robust to plant modeling uncertainty. Recently, Singer

and Seering [7-8] have developed an alternative, robust approach of shaping a feedfor-

ward input command by acausally filtering out the frequency components of flexible

mode resonances. Some tradeoffs, however, must be made between performance (a

fast settling time) and robustness (insensitivity) to plant parameter uncertainty even

for this preshaped open-loop approach.

This paper provides a comparison between a preshaped feedforward command

generator [7-8] and a robustified feedback controller [10-13] with non-zero set-point

command for a reference-input tracking problem. It is, however, emphasized that one

of the primary motivations for the use of closed-loop rather than open-loop control

systems in practice is to cope with unexpected disturbances, which an open-loop

controller cannot. Such a disturbance rejection problem is not considered in this

paper. A simple generic model of uncertain dynamical systems shown in Fig. 1 is

used to illustrate the control concepts and methodologies.

The remainder of this paper is organized as follows. In Section 2, time-optimal

control inputs are determined for this example problem. In Section 3, such time-

optimal control inputs are preshaped using a tapped-delay filter to provide a rapid
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maneuver and robust suppression of residual structural vibrations. A robust H._

compensator design is discussed in Section 4, with special emphasis on a proper

implementation of a non-minimum-phase compensator for a non-zero set-point control

problem. It will be shown that a properly designed, feedback controller performs

well, as compared with a time-optimal open-loop controller with special preshaping

for parameter robustness.

2. Time-Optimal Control

Consider a generic example of flexible dynamical systems as shown in Fig. 1. It

is assumed that the two bodies both have nominal unit mass (ml = m2 = 1) and

are connected by a spring with nominal stiffness k = 1. A control input force u acts

on body 1 and the position of body 2 is the output to be controlled (y = x_). It is

assumed that the control input is bounded as lu[ _< 1.

In this section, time-optimal, open-loop control input u(t) is determined by min-

imizing the performance index

_0 t lJ= dt=tl. (1)

where t! is the final time to be obtained. The resulting time-optimal control input

will be preshaped in Section 3, using a tapped-delay filter, to improve peformance

robustness with respect to plant parameter uncertainty.

Rigid-Body Time-Optimal Control

For a "rigidized" model of the nominal system shown in Fig. I, the equation of

motion is simply

(ml + rn_)_ = u. (2)

The rest-to-rest, time-optimal solution for y(0) = 0 and y(tr) = 1 can be found as

= - 2 .(t - + -tl) (3)

where t! = 2¢(m, + m_)y(tl) = 2.828 sec and u,(t) represents a unit-step function.



If this time-optimal input force is exerted on the nominal system with a flexible

mode (Fig. 1), a significant residualstructural vibration will occur, ascan beseenin

Fig. 2.

Flexible-Body Time-Optimal Control

Consider a time-optimal control problem for the flexible-body model shown in

Fig. 1. The equationsof motion are

m1_1 + k(xl - x2) = u

m_2 - k(xl - x2) = 0

(4a)

(4b)

where xl and z2 are the positions of body 1 and body 2, respectively. This system

can also be represented in state-space form as

k(t) = Ax(t) + Bu(t) (5a)

y(t)=C_(t) (Sb)

where

X ""

A _

C ,.._

1
xl x2 x3 x4 j

0 0

0 0

-klml klm,
k/m2 -k/m2

0 1 0 0].

0

1

0 '

0

B __

0

0

1/m:
0

The time-optimal control input for this problem, which first appeared in [10], can

be solved using the following approach discussed in [4]. For our two-mass-spring

model, three switching times are required. The nominal system with ml = ms = k =

1 is first transformed into modal equations by the coordinate transformation

__[11][ql]1, ,6,
where ql and q_ are the modal coordinates, and the resulting modal equations are

_I = u/2

4
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q2 + ¢02q_ = u/2 (7b)

where w = v'_ rad/sec is the nominal flexible mode frequency. For given boundary

conditions

q,(0) = 0, q,(0) = 0,

q_(0)= 0, 6(0) = 0,

q,(tj) = 1, _,(t_) = 0,

q_(t_)= 0, 6(t_) = 0,

the following two constraint equations can be obtained as

1 - 2coswtl + 2coswt2 - 2cos_ta + cos_t I = 0

4-t_ + 2(t!-t,) 2- 2(t!-t_): + 2(t/-tz) 2 =0

where ta, t_, and ta are the switching times and t.t the final time to be solved. From

the symmetric nature of this problem, we have

and the switching times can be found as

ta = 1.00268 sec

t_ = 2.10893 sec

t3 = 3.21518 sec

t! - 4.21786 sec.

Note that a longer maneuver time of 4.217 sec is required for a flexible body, as

compared with the maneuver time of 2.828 see for a rigidized system.

The time-optimal control input can then be expressed as

u(t) = u,(t) - 2,,,(t - t,) + 2u,(t - t_)

- 2_,,(t- t_)+ ,.,,(t- t_). (8)
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The open-loop responsesof the system to this time-optimal control input are

shownin Fig. 3 for four different values of k. It can be seen that an ideal, minimum-

time maneuver is achieved for the nominal system and that perturbations in spring

constant k, however, result in residual vibrations of the flexible mode.

3. Preshaped Time-Optimal Control

As shown in the preceding section, the time-optimal solution requires accurate

modeling of the system, and the open-loop responses to such an ideal input force

are very sensitive to the plant modeling uncertainty. In this section, an "impulse-

sequence" shaping technique developed by Singer and Seering [7-8] is employed to

preshape the ideal, time-optimal inputs. Performance of the resulting robust feedfor-

ward controller will be compared with that of a robust, feedback controller in Section

4.

The preshaping technique in [7-8] simply utilizes a tapped-delay filter with proper

weightings and time delays. This technique is briefly reviewed here for our example

with a single, undamped flexible mode.

A sequence of rn impulses can be expressed in time domain as

rn

f(t) -- _ A,6(t - t,)
i=1

with the following normalization

(9)

i=1

where A_ is the magnitude of the i th impulse at t = t, and the last impulse occurs at

t=t_.

A bang-bang function with (n - 2) switches can be represented as

n

j----1

where Bj is the magnitude of a step function at t = tj. This bang-bang function ends

at t = t,_.

(11)

_';A, = 1 (10)



The convolution of u(t) and f(t) will result in a new multi-switch, multi-level,

bang-bang function

fi(t) = y_ y_ A,Bjuo(t - t, - tj). (12)
i=l j=l

This function has (ran - 2) switching times and ends at t = (t_ + t,).

A proper sequence of impulses, whose power spectrum has a notch at a structural

resonant frequency, can be found as follows. If a sequence of m impulses in Eq. (9) is

applied to an undamped second-order system with natural frequency of w, the system

response for t > t_ can be represented as:

y_ Aiwsinw(t - ti) = Asin(_t - ¢)
i=1

where

(13)

A = (y_ A,wcoswt,) _ + (y_ A,wsinwt,) 2
i_-I i----I

_'_=1 Aisinwti

¢ = tan-l( ZP=! A_coswti )"

If Ai's and t,'s are chosen such that A = 0, that is,

Atcoswtx + A2cos_Q + ... + A_coswt_ = 0

Atsinwtt + A2sinwt2 + ... + A,_sinwt,,, = 0

(14a)

(14b)

then the residual vibration will not occur after t = t_.

Taking derivatives of the preceding two equations for (m - 2) times with respect

to w, we get the following 2(m - 2) robustness constraint equations

A_(q)Jsinwtl + A2(t_)Jsinwt_ + ...

+ A,,,(t_)Jsinwt,,, = 0

a_(tl)Jcoswta + A2(t2)Jcos_t2 +...

+ A_(t,_)Jcoswt,,, = 0

(15a)

(15b)

j = 1,...,m-2.

For an m-impulse sequence with tl = 0, we now have (2m - 1) equations for (2rn - I)

unknowns.



Figure 4 illustrates three different impulse-sequences with proper Ai's and the

time-delay interval of AT = r/_, where w is the natural frequency of the flexible

mode under consideration.

The frequency response characteristics of this impulse-sequence shaping technique

can be analyzed simply by taking the Laplace transform of an m-impulse sequence

as follows:

L[f(/)] - _] A,e-""
i----1

= E Aie-_T(i-l)° (16)
i----I

which can be interpreted as a tapped-delay filter (see Fig. 5). The frequency responses

of this tapped-delay filter for m = 2, 3 and 4 are shown in Fig. 6. It can be seen

that the frequency component around the resonant frequency is notched out. The

wider notch width indicates more robustness to frequency uncertainty, but a longer

response time.

The flexible-body time-optimal input given by Eq. 8 is now preshaped by a

tapped-delay filter with m = 2, resulting in the preshaped input command

ft(t) = 0.5u,(t) - u,(t - 1.003) + u,(t - 2.109)

+ 0.5u,(t - 2.221) - u,(t - 3.215)

- u,(t - 3.224) + 0.5u,(t - 4.218)

+ u,(t - 4.330) - u,(t - 5.436)

+ 0.Su0(t - 6.439). (17)

This preshaped input takes values of +1.0 and +0.5.

The flexible-body time-optimal input is also preshaped using a tapped-delay filter

with m = 3, resulting in the preshaped control input command

fi(t) = 0.25u,(t)- 0.5u,(t - 1.003) + 0.5u,(t- 2.109)

+ 0.5uo(/- 2.221) - 0.5u,(t - 3.215)

- u.(t - 3..'224) -'1-0.25u,(t -4.218)
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+ u,(t - 4.330) + 0.25u,(t - 4.442)

- uo(t - 5.436) - 0.5u,(t - 5.445)

+ 0.5u,(t - 6.439) + 0.5u,(t - 6.551)

- 0.5uo(t - 7.657) + 0.25u,(t - 8.660).

It can be seen from Fig. 7 that the preshaped command takes values of +0.25, +0.5

and +0.75. The time responses of the system to this preshaped input are shown in

Fig. 8 for four different values of k. It is evident that robustness with respect to

flexible mode frequency has been increased at the expense of increasing manuever

time to about 8.66 sec, comparing with the ideal minimum time of 4.218 sec shown

in Fig. 3.

The simple, rigid-body time-optimal input given by Eq. 3 can also be preshaped

to reduce the residual vibration shown in Fig. 2. For example, preshaping the rigid-

body bang- bang command with a tapped-delay filter with m = 3 results in another

bang- bang command:

u(t) = 0.25u,(t) -0.5u,(t- 1.414) + 0.5u0(t- 2.221)

+ 0.25u,(t - 2.828) - u,(t - 3.635)

+ 0.25u,(t - 4.442) + 0.Su,(t - 5.049)

- 0.5u,(t - 5.856) + 0.25u,(t - 7.270). (19)

The responses of the system to this preshaped input (not shown here) also indicate

a reasonable performance robustness (but not better than Fig. 8). In practice,

however, the time-optimal solution for a rigidized rather than flexible model of a

multi-link flexible robot (e.g, see [14]) may be preshaped using a tapped-delay filter

to accommodate the flexible mode effects.

In summary, we have shown that time-optimal control input, preshaped using a

tapped delay filter, provides a robust maneuvering scheme which can minimize resid-

ual structural vibrations. It is also evident that some tradeoffs between performance

and robustness must always be considered. In the next section, a robust feedback

compensator will be designed and its performance and robustness will be compared

with that of the robust, preshaped feedforward approach discussed in this section.

9



4. Robust Feedback Control Design

As discovered in [10-13], a non-minimum-phase compensation is particularly use-

ful for practical tradeoffs between performance and robustness for a certain class of

noncolocated structural control problems. It is, however, often criticized because

of its sluggish response and its loop gain limitation. In this section, a robust Hoo

feedback compensator design is discussed with special emphasis on a proper imple-

mentation of a non-minimum-phase compensator, incorporating a non-zero set-point

control scheme. It is shown that a properly designed, feedback controller with a non-

zero set-point command performs well, as compared with a time-optimal, open-loop

controller with special preshaping for robustness.

Consider a single-input single-output (SISO) control system as illustrated in Fig. 9,

which is the most commonly used configuration for a "two-degree-of-freedom" con-

troller. The plant and compensator transfer functions are represented as

K(s) = No(s) (20a)
De(s)

G(s) = N(s_.__) (20b)

where Nc(s), D_(s), N(s) and D(s) are polynomials of the Laplace transform variable

s. The closed-loop transfer function from the desired output command y" to the actual

output y is then

=
y'(s) t +

N¢N
D_D + Nj(Ftsj.t _

(21)

Thus, for the conventional feedback control system of Fig. 9, the zeros of the

closed-loop transfer function are identical with the zeros of the loop transfer function

K(s)G(s). These zeros sometimes cause an excessive, transient peak overshoot even

when the closed-loop poles are properly selected. In this case, a prefilter F(s) is often

used for the cancellation of the undesirable zeros of the closed-loop transfer function.

(Of course, we cannot cancel the non-minimum-phase zeros!)

10



If the compensator is placed in the feedback path, the closed-loop transfer function

becomes

v(,) G(,)
y'(s) - 1 + K(s)G(s) F(s)

D,N

= D,D + NoN F(s) (22)

where the compensator zeros do not appear as zeros of the closed-loop transfer func-

tion, and a prefilter F(s) must be properly designed for the generation of a control

input command. Recall that one of the primary motivations for the use of closed-loop

rather than open-loop control systems in practice is to cope with unexpected distur-

bances, which an open-loop controller cannot. For this reason, feedforward control is

seldom used alone, but rather, it is used in combination with feedback control.

In this section, we show a proper way of implementating a non-minimum-phase

compensator to minimize such excessive, transient peak overshoot caused by the com-

pensator zeros. We briefly review a robust Hoo control design methodology developed

in [12-13], and we present a non-zero set-point control scheme for an Hoo-based con-

troller, followed by an example design.

Robust H_o Control

Consider a linear, time-invariant system described by [15]

Jc(t) = Az(t) + Blw(t) + B2u(t)

z(t) = Clz(t) + D_w(t) + D,2u(t)

y(t) = C_z(t) + D2,w(t) + D22u(t)

(23)

where z(t) is an n-dimensional state vector, w(t) an rnl-dimensional disturbance

vector, u(t) an m2-dimensional control vector, z(t) a pFdimensional controlled output

vector, and v(t) a p2-dimensional measurement vector.

In order to utilize the concept of an internal feedback loop, the system with

uncertain parameters is described as [12, 13]

z = C1 Dll D12 w

v C2 /)22 u
(24)

11



where Ca, Dn, and Da2 are not subject to parameter variations. The perturbed

system matrix in Eq. (24) can be linearly decomposed as follows:

z = Ca Dn D1_ +A v w

y C2 D21 D22 u

(25)

where the first matrix in the right-hand side is the nominal system matrix and Ap is

the perturbation matrix defined as

AA AB1 AB2 1
Ap a__ 0 0 0 . (26)

zXC: zXD;, AD;2

Suppose that there are l independent perturbed parameters pl,...,pt which are

bounded as [Api I _< 1. The perturbation matrix Ap is then decomposed with respect

to each parameter variation as

Ap= - 0 E[ N_ N_, N_ ]=-MEN (27)

where

ap1 0
E _ ".,

0 Apt

By introducing the following new variables

(28)

A 0
27

Wp

W

tt

(29a)

A

wp = - Ezp, (29b)

the perturbed system, Eq. (25), and the input-output decomposition, Eq. (27), can

be combined as:

Zp

Z

y

Wp

A

g_
Ca
C_

-" _ Ezp

M_ Ba B_
0 N,_ N,,
0 Dn Da2

M_ D2a D2_

X

Wp

W

tt

(30a)

(30b)
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where wp and zp are considered as the fictitious input and output, respectively, due

to the plant perturbation; and E is considered as a fictitious, internal feedback loop

gain matrix.

The following redefinition of z, w, and expansion of the associated matrices enable

us to employ the state-space representation given by Eq. (23):

0 N_, ]Dl1.-- 0 Dll '

<'- o,

°,,- ]o,,
(31)

It can be shown that under certain conditions, there exists an internally stabilizing

controller such that, for the closed-loop transfer matrix T and for a given design

variable %

[[r[[oo <

if and only if the following Riccati equations [15]

1 T -

o = ATX + XA - X(B_Bf - 7_B,B, ).,_+ C_,C, (32)
1 T

0 - AY + YA T - y(cTc= - -tiC, C,)Y + B,B T (33)

have unique symmetric positive semi-definite solutions X and Y.

An H_-suboptimal controller that satisfies IITz_ll_o< _, where 7 is a design

variable specifying an upper bound of the perturbed closed-loop performance Tz_,, is

then obtained as

u(s) = -K[sI- A¢]-_Ly(s) (34)

or

&c = A¢x¢ + Ly (35a)

u = -Kz_ (35b)

13



where

K = BTx

L=(I-+YX)-xYC T

Ac = A + _B1BrX - B2K - LC2.

(36a)

(36b)

(36c)

Note that this Hoo controller has a structure similar to a conventional state-space

controller consisting of an estimator and a regulator, but is designed for a plant system

matrix

A + _B1BTX

where BxBTX/'_ 2 can be interpreted as an estimate for the worst disturbance input.

In other words, the separation principle of the conventional linear-quadratic-gaussian

(LQG) technique does not hold here. Consequently, the non-zero set-point control

scheme, which has been well established for LQG control synthesis, needs some minor

modification as discussed in the next section.

Non-Zero Set-Point Control

A block diagram representation of a SISO closed-loop system for a conventional

LQG-type controller with a non-zero set-point command is illustrated in Fig. 10.

For this configuration, the control input command, u', corresponding to the desired

(constant) output command, y*, is simply given as

u*=-[C(A-BK)-'B]-ly * (37)

which is independent of the estimator gain matrix L. In this case, we can easily show

that for dynamic systems having a rigid-body mode, u* depends only on the regulator

parameters (not on the plant parameters such as ml, m2, and k of the example model

shown in Fig. 1). Hence, the non-zero set-point control scheme is inherently robust

to plant parameter uncertainty for a certain class of dynamical systems with at least

one pole at the origin (i.e., a type-1 system).

Now consider a closed-loop control system with an H_ controller as shown in Fig.

14



11, which is describedin state-spaceform as

[mkc = LC2 Ac xc
11

U

(38a)

The input command u" corresponding to the desired output y" can be simply found

as

where

u" = _[_,_-1/_]-1y. (39)

LC2 A¢ ' B2 (40)

6'= C2 0].
Similarly to the LQG case, it can be shown that for dynamic systems having a

rigid-body mode, u" for an Hoo controller depends only on the controller parameters

(not on the plant parameters such as rex, rn2, and k of the example model shown in

Fig. 1). However, u" now depends on both the gain matrices K and L , not just on

the regulator gain matrix K as for the LQG case.

Example Design

We now consider the two-mass-spring model shown in Fig. 1. A control input

force u acts on body 1 and the position of body 2 is measured as y, resulting in

the so-called noncolocated control problem. The control design objective here is to

achieve a fast settling time (high performance) for an output command y" = 1 and

robust performance over a range of spring stiffness uncertainty considered in Section

3. The control input is bounded as lul _< 1 and the system has the nominal values of

rnl_-m2--k- I.

The plant model can be represented in state-space form as:

k2

k3

k4

0

0

-k

k

0

0
+

1

0

0 1 0

0 0 1

k 0 0

-k 0 0

(U "Jr" Wl)

Xl

X2

X3

X4

(41a)
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y = z:_ + v (41b)

z = x2 (41c)

where wl and v are, respectively, plant disturbance and sensor noise assumed for

control design purposes.

The variation AA is decomposed as

AA = -Ak

0

0

11 [ 1
-1 0 0]. (42)

The other elements of the perturbation matrix in Eq. (26) are all zeros. Note that

AA is spanned by the matrices

M -.-

0

0

11

and -1 0 0]

where M= is the fictitious disturbance distribution matrix spanning the columns of

AA, and N_ is the fictitious controlled output distribution matrix spanning the rows

of AA. The fictitious input and output for this example are expressed as

zp=Nx=xl-x_ and wp=-Akzp. (43)

Equation (43) replaces the parameter variation in Eqs. (41), resulting in the fol-

lowing equations:

_2

_3

_4

[z:]

+

0

0

-k

k

0

0

1

0

Xl -- 272 1

]2:2

U

0 1 0

0 0 1

k 0 0

-k 0 0

(u + wa) +

0

0

1

-1

Xl

X2

X3

x4

Wp (44a)

(44b)
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y = x2 + v (44c)

where k is the nominal spring constant. As can be seen in Eq. (44b), control input u

is also included in the performance variable z in order to minimize control effort.

By defining

Zp
w *--- wl and z _ (45)

Z
Y

and by using the definition of Eq. (31), the system matrices in Eq. (23) can be

represented as

A .._

BI --

C 1

C2

0 0

0 0

-k k

k -k

0 0

0 0

1 1

-1 0

1 -1

0 1

0 0

0 1 0

1 0

0 1

0 0

0 0

0

0

0 '

0

°°10 0 ,

0 0

o],

n 2 _.

012 --

021 _-

0

0

I

0

0]0

1

0 0 1]

and Dll = 03×3, D22 = 0.

For the example design considered here, the disturbances wp, wl, and v are mul-

tiplied by weighting factors, 0.1, 0.025, and 0.025, respectively. The performance

specification bound 3' is chosen to be 1. The weighting factors and 3' represent rela-

tive disturbance levels and overall closed-loop performance level, respectively.

By solving two Riccati equations, Eqs. (32) and (33), we get the controller gain

matrices K and L as follows:

K= [1.506 -0.494 1.738 0.932 ],

L= [0.720 2.973 -3.370 4.419 ]r

17



The correspondingrobust Hoo controller is then

0.0827(0--_ _ + 1)( 0k84 + 1)
-- -

• 2 2(0.825)(x.---_) 1]+ +
+ 1)

[(2.-_)' + 2(0.459)(2.-_40) + 1] y(s)
(47)

which is a non-minimum-phase compensator.

Figure 12 shows a closed-loop root locus versus overall gain of this compensator.

The gain margin is 3.28 dB, and the closed-loop system is stable for 0.44 < k _< 3.27,

which corresponds to -0.56 < Ak <_ +2.27. The nominal system's closed-loop poles

are:

-0.337 4- 0.336j, -0.514 =k 0.414j, (48)
-0.376 4- 1.495j, -1.109 4- 1.797j.

The time response of the closed-loop system implemented as in Fig. 9, for F(s) = 1

and y" = 1, is shown in Fig. 13. A non-minimum-phase behavior of the closed-loop

system is evident and the nominal system has a peak overshoot of about 80% and a

settling time of 15 sec. When compared with the response of a feedforward controller,

shown in Fig. 8, the overall response is not acceptable. It can be shown that the

excessive overshoot is due to the compensator zero at s = -0.145. This zero may

be cancelled by a prefilter F(s), but the resulting slower settling time may not be

desirable.

Figure 14 shows the closed-loop responses for four different values of k to an

output command of y" = 1 (consequently, u" = 0.9959), when the same controller is

implemented as in Fig. 11. Clearly, the responses no longer have excessive overshoot

and the settling time is quite short, as compared with the response in Fig. 13. The

overall responses are also comparable with those of a preshaped feedforward controller,

as can be seen in Fig. 14. The control input u(t) is always within the saturation limit

of one.

In summary, we may conclude that a feedback controller, when implemented prop-

erly, could achieve good performance and robustness, for both command following as

well as disturbance rejection problems. The proposed feedforward/feedback control

approach is robust for a certain class of uncertain dynamical systems, since the con-

trol input command computed for a given desired output does not depend on the

plant parameters.
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5. Conclusions

In this paper we have investigated both feedforward and feedback control ap-

proaches for rapid maneuvering control of uncertain dynamical systems. A simple

two-mass-spring example was used to illustrate the control concepts and methodolo-

gies. It was shown that a time-optimal control input, preshaped using a tapped-delay

filter, provides a rapid maneuver and robust suppression of residual structural vibra-

tions. A proper implementation of a non-minimum-phase compensator with a non-

zero set-point control command was discussed. It was demonstrated that a properly

implemented feedback controller performs well, when compared with a time-optimal,

open-loop controller with special preshaping for performance robustness.
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Figure 1: Two-mass-spring example.
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Abstract

A new approach for computing time-optimal open-loop control inputs for uncertain

flexible spacecraft is developed. In particular, the single-axis, rest-to-rest maneuvering

problem of flexible spacecraft in the presence of uncertainty in model parameters is

investigated. Robust time-optimal control inputs are obtained by solving a parameter

optimization problem subject to robustness constraints. A simple dynamical system

with a rigid-body mode and one flexible mode is used to illustrate the concept.

1. Introduction

This paper is concerned with the problem of computing open-loop control inputs for

flexible spacecraft, robotic manipulators and pointing systems in space, which are often

required to maneuver as quickly as possible without significant structural vibrations

during and/or after a maneuver.

A standard, time-optimal control approach to such a problem requires an accurate

mathematical model, and thus the resulting solution is often sensitive to variations in

model parameters. For this reason, an open-loop time-optimal controller is seldom used

in practice. Consequently, the development of a "robustified" open-loop approach for a

rapid maneuver without significant structural vibrations is of current research interest

[1-3]. Other open-loop approaches [4-6] attempt to find a smooth continuous forcing

function (e.g., a versine function) that begins and ends with zero slope. The basic idea
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_Graduate Research Assistant,Student Member AIAA.
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behind such approaches is that a smooth control input without sharp transitions is less

likely to excite structural modes during maneuvers.

In this paper, a new approach is developed for computing time-optimal control inputs

for the single-axis, rest-to-rest maneuvering problem of flexible spacecraft in the presence

of structural mode frequency uncertainty. A parameter optimization problem, where

the objective function to be minimized is the maneuvering time, is formulated with

additional constraints for robustness with respect to structural parameter uncertainty.

The resulting robust time-optimal solution is a multi-switch bang-bang control which

can be implemented for spacecraft equipped with on-off reaction jets [7]. This result

further confirms that most open-loop approaches, which utilize a smooth continuous

control input so that structural modes are less likely to be excited, do not fully utilize

the available control energy in performing a robust time-optimal maneuver.

The paper is organized as follows. In Section 2, the rest-to-rest maneuvering con-

straints for multi-switch bang-bang inputs are derived with some discussion on the pre-

vious results of [8-10] on the number of switchings for the time-optimal solution. The

standard, time-optimal control problem is then transformed into a constrained parameter

optimization problem. In Section 3, robustness constraints are derived and incorporated

with the parameter optimization problem formulated in Section 2. A simple dynamical

system with a rigid-body mode and one flexible mode, shown in Fig. 1, is used to illus-

trate the concept, and the robust time-optimal solution for a case with a single two-sided

control (Case 1) is discussed. In Section 4, the same example with two one-sided control

inputs (Case 2) is further investigated.

2. Time-Optimal Rest-to-Rest Maneuver

Problem Formulation

Consider a linear model of flexible spacecraft described by

M_: + Kx = Gu (1)

where x is a generalized displacement vector, M a mass matrix, K a stiffness matrix, G

a control input distribution matrix and u a control input vector.

In this section, we consider a case with a scalar control input u(t) bounded as

-1_<u_<1 (2)

2



Equation (1) can be transformedinto the decoupledmodal equations:

_i + _yl = Ct u

: (3)

Yn 2+ _.y,, = _.u

where _i is the i t*` modal coordinate, _;_ the i th modal frequency, '_i i th modal gain, and

n the number of modes considered in control design.

The problem is to find the control input which minimizes the performance index

d = fotl dt = t I

subject to Eqs. (2) and (3), and given boundary conditions.

The time-optimal control problem of a linear controllable system has a unique solu-

tion which is "bang-bang" control with a finite number of switches [10]. For a spring-mass

dynamical system with n degrees of freedom, the time-optimal bang-bang solution for

a rest-to-rest maneuver has, in most cases, (2n - 1) switches [8-9], and the solution is

symmetric about tl/2. That is, for a case with (en - 1) switches, we have

tj =ten-ten_j; j = 1,--.,n t4)

where t2n = t/.

A bang-bang input with (2n - I) switches can then be represented as:

_n

_,(t) = _ Bj_,,(t - t.,)
j=O

where Bj is the magnitude of a unit step function u,(t) at tj. This function can be

characterized by its switch pattern as:

B=(Bo, Bl, Be,"', Ben}

T={to, tl, re, ..', re,, }

where B represents a set of Bj with B0 = Ben = +1 and Bj = -t-2 for j = 1,..., 2n - 1;

T represents a set of switching times (tl,..., t2,,-l) and the initial and final times (to = 0

and t/= ten).

3



Rest-to-Rest Maneuver Constraints

Consider the rigid-body mode equation with wl = O:

01 = ¢1u (6)

with the rest-to-rest maneuvering boundary conditions

y,(o) = o, y,(t:) # o
i/,(o) = o, i_,(t:) = 0 (7)

Substituting Eq. (5) into Eq. (6) and solving for the time response of the rigid-body

mode, we get

(_I 2n

yl(t >_ t S) = -_ _(t! - ti)_Bj (8)
j=O

The rest-to-rest maneuvering constraint for the rigid-body mode can then be written as:

2_

¢_ _(ts - tj)_B, - y,(ts) = o
2 j=o

Consider now the structural modes described by

(9)

_h+w_Y,=¢iu; i=2,...,n (10)

with the corresponding boundary conditions for the rest-to-rest maneuver:

yi(O) = O, y,(tl) = 0

0,(0) = o, y,(tj) = o (11)

for each flexible mode.

Substituting Eq. (5) into the ith structural mode equation and solving for the time

response for t > t], we get

yi(t) -- ¢' _ Bjcos_,(t -t_)
¢d? j=O

2n

j=O

2n

+ sin wi(t -t.) _ B e sin wi(tj -t.)]
j=O

(12)

It can be shown that the following constraint equation for each mode

2r_

y_ B# sin wi(tj - t,_) = 0
j=O

o°

(13)



is alwayssatisfiedfor any bang-banginput which is symmetricabout the mid-maneuver

time t,_. Consequently, we have the following flexible mode constraints for no residual

structural vibration (i.e., y_(t) = 0 for t > tf):

2n

Bj cos_,(t_ - t.) = 0
j=O

(14)

for each flexible mode.

Parameter Optimization Problem

For a spring-mass system of n degrees of freedom, the time-optimal solution repre-

sented by Eq. (5) has the (2n - 1) unknown switching times and the final time t! to be

determined. The time-optimal control problem can now be formulated as a constrained

parameter optimization problem as follows:

Determine a control of the form given by Eq. (5) that minimizes the final time tI

subject to

2n

¢_ _(ts -t_)_Bj - y,(t:) = o
2 j=o
2n

B_.cos,,.,,(tj- t.) = o; i = 2,...,,
j=O

tj >0; j= 1,...,2n

(15a)

(15b)

where t f = t_n.

Remark: Note that ¢i (i = 2,...,n) do not appear in Eqs. (15); that is, the optimal

solution to this problem is independent of the flexible mode shapes. In other words, the

time-optimal control input is independent of actuator location for a system described

by Eq. (3) with a scalar input.

Standard optimization packages (e.g., IMSL subroutines) can be used to obtain the

solution of the above optimization problem. The major advantage of the proposed

approach, compared to other direct numerical optimization approaches employed in

[11-14] for the time-optimal control problem, is that some robustness constraints with

respect to plant parameter uncertainty can be easily augmented. This subject will be

discussed in detail in Section 3.



Sufficient Conditions for Optimality

Equations (15) are necessary conditions for time-optimal control, and sufficient con-

ditions for optimality can be checked as follows.

Let the costate vector corresponding to the modal state vector [Yl, Yl, wy_, _)2, • • •

be defined as

A(t)= [p,(t), q_(t), ..., p_(t), q_(t)]_ It6)
It is shown in [8] that at mid-maneuver, we have

A(t,)= [p,(t,), 0, p_(t,), 0, ..., p_(t,), 0 ]_ I17)

and thus the costate vector can be solved as

p,(t) = p,(t.)
q_(t)= -(t-t,,)pl(t.,)
p_(t) = p,(t.) _s_,(t - t_)
qi(t) = -pi(t,,)sinwi(t -t,_)

(18)

for each flexible mode. Then pi(t,,), for i = 1,...

linear equations:

, n, can be found from the following n

provided that

rt

S(t) = -¢,pl(t,,)(t - t,) - __, ¢,p,(t,_)sinw,(t - t,_) -Tt0 (21)
i=2

for t E (t,_,t_,_) and t :_ tj, j = n+ 1,...,2n, and S(t) represents the switching function.

Remark: If modal frequencies are rational multiples of each other and the funda-

mental frequency, _2, satisfies the following relationship

w2 = 2_" Y,'(-/I) e = 1,2,... (22)

then the time-optimal solution has only one switch and is equivalent to the solution of

a "rigidized" case.

1 + ¢_p_(t,,)t,, + _"_¢,p,(t,_)sinwit, = 0 (19)
i=2

Cxpl(t,_)(tj - t,_) + __, ¢,pi(t,)sinwi(tj - t_) = 0 (20)
i=2

where j = n + 1,...,2n - 1.

The solution obtained by minimizing t! subject to Eqs. (15) becomes time-optimal



Example: Case 1 with a Scalar Control Input

Consider a simple example, shown in Fig. 1, which is a generic representation of a

flexible spacecraft with a rigid-body mode and one flexible mode. Case 1 with a scalar

control input u(t) is considered here. The equations of motion are

m1_1 + k(zl - x2) = ul = u

m2_2 - k(xl - x2) = u2 = 0

(23a)

(23b)

where xl and z2 are the positions of body 1 and body 2, respectively, and the nominal

parameters are mt = m2 = k = 1 with appropriate units, and time is in units of second.

The boundary conditions for a rest-to-rest maneuver are given as

xx(O)=x2(O)=O, x](tl) =x2(t/)= 1 (24)
_,(0) = _(0) = 0, _,(tf) = _(tf) = 0

The modal equations are

gl = u/2 (25a)

y2 + w2y2 = u/2 (25b)

where w = v_ rad/sec is the nominal flexible mode frequency. The corresponding

boundary conditions for modal coordinates are

y,(o) =y2(o)= o, y,(t_) = 1, y_(t_)= o
_)1(0) = _)2(0) = 0, _),(t/) = _)_(t/) = 0 (26)

Since there are 3 switches, the time-optimal switch pattern for the given boundary

conditions is represented as

B={B0, B1, B2, B3, B4 }

= { 1, -2, 2, -z, 1 }

T = { to, tl, t2, t3, t4 }

with the symmetry conditions

7



The time-optimal control problem is then formulated as the following constrained

minimization problem:

rain d = 2t2 (27)

subject to

2 + + - 4tit2 = 0

1 - 2cosw(t2 - t_) + cos_t2 = 0

tl, t2 > 0;

A standard IMSL FORTRAN subroutine was used to obtain a solution as: tl = 1.003

and t2= 2.109. The computed solution satisfies the optimality conditions of Eq. (21);

i.e., the switching function vanishes only at t = t_, t2 and t3. Thus, the solution obtained

via Eq. (27) is indeed time-optimal and it can be expressed as

u(t) = u,(t) - 2u,(t - 1.003) + 2u,(t - 2.109)

- 2u,(t - 3.215) + u,(t -4.218) (28)

The time responses of x_ to the time-optimal control input are shown in Fig. 2 for

four different values of k. It can be seen that the resulting responses are sensitive to

variations in the model parameter k.

3. Robust Time-Optimal Control

As discussed in the preceding section, a standard, time-optimal control approach

requires an accurate mathematical model and thus the resulting solution is often sensitive

to plant modeling uncertainty.

In this section, a new approach, expanding on the approach introduced in Section 2,

is developed for computing time-optimal control inputs for the single-axis, rest-to-rest

maneuvering problem of flexible spacecraft in the presence of structural mode frequency

uncertainty. A parameter optimization problem, where the objective function to be

minimized is the maneuvering time, is formulated with additional constraints for ro-

bustness with respect to the structural frequency uncertainty. The resulting robustified,

time-optimal soultion is a multi-switch b_ng-bang control, and is thus implementable

for spacecraft equipped with on-off reaction jets [7].



Robustness Constraints

By taking the derivative of Eq. (12) with respect to wi, we get

dwi = w"_ c°sw'(t- ) _ (t., - )Bjsinwi(tj- )
(29)

for each flexible mode. Letting dyi(t)/d_i = 0 for all t > tl, we have

y_(tj - )Bj sinwi(t: - )= 0; i= 2,...,n (30)
./=0

which is called the first-order robustness constraints.

thSimilarly, taking the derivative of Eq. (12) ri times with respect to wi results in r i

order robustness constraints for each flexible mode as follows:

Z(t,- )mB sin ,(tj- )=0
j=O

for rn = 1,3,... < ri

 (tj- )mBjcos ,(t,- )=0
j=O

for rn = 2,4,... <_ ri

(31a)

(31b)

There are total r robustness constraints for (n - 1) flexible modes, where

r = _ r, (32)
i=2

If these robustness constraints are included in the constrained minimization problem

formulation described by Eq. (15), the number of switches in the bang-bang control

input, in most cases, must be increased to match the number of the constraint equa-

tions. Due to the symmetric nature of the rest-to-rest maneuvering problem, adding one

robustness constraint will require, at least, two more switches.

Robust Time-Optimal Control

If r robustness constraints are considered for a flexible spacecraft of n modes, the

corresponding robustified bang-bang control input becomes

2(,_+_)

u(t) = __, Bju,(t - tj) (33)
.7=0
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which has 2(n + r) unknown switching times. Due to the symmetry property of the

optimal solution for the rest-to-rest maneuvering problem, we have

ts = t2ln+,) - t2(,_+,i_j; j = 1,.-., n + r (34)

Therefore, there are only (n+r) unknowns to be determined in Eq. (33). These unknowns

can be determined by minimizing t/ subject to the (n + r) constraint equations: one

positioning constraint for the rigid-body mode, (n - 1) no-vibration constraints and r

robustness constraints.

While many theoretical issues (e.g., the uniqueness of the optimal solution) need to

be explored, a solution can be obtained by solving the following constrained parameter

optimization problem:

subject to

min J = t I = t2(,,+,) (35)

_bl 2(n+r)

T _ (t_(,,+,)- tj?B_- y,(tl)= 0
j--O

2(n+r)

B, cos_,(t, - t.+.) =0
j=O

2(n+r)

__, (tj -t,+,)mBisinw,(tj - t,=+,) = 0;
j=O

for rn = 1,3,... _< ri

2(n+r)

(tj - t.+.)"B, cos_,(tj - t.+.) = 0;
j=O

for rn = 2,4,... < ri

t_ > O; j = 1,...,2(n + r)

for each flexible mode. The resulting bang-bang control input, which has 2r more

switches than the time-optimal bang-bang solution of Section 2, is called a robust (or

robustified) time-optimal solution in this paper.

Example: Case 1 with a Scalar Control Input

For Case I, the time-optimal control isa three-switchbang-bang function,but the

resultingresponses were shown to be sensitiveto variationsin model parameter k . A

robust time-optimal solution of the same problem is now developed as follows. The

switching pattern fora case with the first-orderrobustness constraintisassumed as:

I0



B={ Bo, B,, B_, B3, /34, Bs, /36 }

={1, -2, 2, -2, 2, -2, 1} (36a)

T={t0, tl, t2, t3, t4, ts, t6 ) (36b)

with the symmetry conditions

t4 = 2t3 - t2

t5 = 2t3 - t, (37)

t_ = 2t3

The constrained optimization problem with the first-order robustness constraint can

be formulated as:

rain J = t6 (38)

subject to

2+ - - - 4t,t3 + 4t2t3= 0

cos ,_t3 - 2 cos _o(t3 - tl)

+2cosw(t3 - t2) - 1 = 0

t3sinwt3 - 2(t3 - tl)sin w(t3 - tl)

+ 2(t3 - t2) sinw(t3 - t2) = 0

tl, t2, t3 > 0;

(39a)

(39b)

(39c)

A robust time-optimal solution with 5 switches can be found as:

tl = 0.7124,

t3 = 2.9330,

t5 = 5.1536,

t2 = 1.6563

t4 = 4.2097

t6 = 5.8660

(40)

The time responses of x2 to this "robustified" time-optimal control input are shown

in Fig. 3 for four different va]ues of k. It can be seen that the resulting responses are ]ess

sensitive to parameter variations, compared to the responses to the ideal, time-optimal

control input as shown in Fig. 2. Performance robustness has been increased at the

expense of the increased maneuvering time of 5.866 sec, comparing to the ideal minimum-

time of 4.218 sec. It is, however, emphasized that simply prolonging the maneuver time

does not help to reduce residual structural vibrations caused by modeling uncertainty.
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Remarks

An impulse-sequenceshaping technique, developed by Singer and Seering [1,2], was

employed by Wie and Liu [3] to preshape the ideal, time-optimal control input given in

Eq. (28). For example, the two-impulse preshaped bang-bang command was obtained

a_

u(t) = 0.5u,(t) - u,(t - 1.003) + u,(t - 2.109)

+ 0.5u,(t - 2.221) - u,(t - 3.215)

- u,(t - 3.224) + 0.5u,(t -4.218)

+ u,(t - 4.330) - u,(t - 5.436)

+ 0.5u,(t - 6.439). (41)

This preshaped input takes values of :l=l.0 and d:0.5, and the resulting response becomes

less sensitive to flexible mode frequency variations as demonstrated in [3].

For Case 1, the time responses to the time-optimal input of Eq. (28), the robust

time-optimal input of Fig. 3, and the preshaped inputs in [3] can be compared as shown

in Figs. 4 and 5. Comparisons of the maneuvering times of four different control schemes

are illustrated in Fig. 4. Parameter robustness with respect to spring constant variations

is compared in Fig. 5. From these figures, it is evident that the proposed approach of this

paper provides a faster and more robust maneuver than other robustified feedforward

approaches. Also, unlike other approaches in [1-6], the resulting solution of our new

approach is a multi-switch bang-bang control which can be implemented for spacecraft

with on-off reaction jets.

In the next section, we will consider a case with two one-sided control inputs in order

to further explore a "time-optimal" actuator placement problem.

4. A Case with Two One-Sided Control Inputs

Problem Formulation

Consider Case 2, illustrated in Fig. 1, with two one-sided control inputs bounded as

0 _< 31 _< -{-1 (42a)

-1 <__32 <_0 (42b)

12



Sincethe control inputs areone-sided,eachcontrol input for the time-optimal solution

need not be an odd function about the mid-maneuver time. Thus, the problem with

one-sidedcontrol inputs becomesmoredifficult to solvethan the standard problemwith

two-sidedcontrol inputs, and many theoretical issues(e.g.,the uniquenessand structure

of time-optimal solutions) needfurther investigation.

For Case2, the modal equations of the system with nominal parameter values are

1

fi - _(ul + us)
1

_ + ,o2_ = 7(1/,- 1/2)

where w = v_ rad/sec is the nominal flexible mode frequency.

as

(43a)

(43b)

For the control input constraint given by Eq. (42), the control inputs can be expressed

Ul -"

1/5 --

N-1

y_ [u.(t - tj) - u,(t - t; - Ai) ] (44a)
3=0,2,4,..-

N

- _., [u.(t-ts)-u.(t-tj-As)] (44b)
3----1,3,S,-..

which is in the form of one-sided pulse sequences as shown in Fig. 6. The jth pulse starts

at tj and ends at (tj + A)). Due to the symmetric nature of the rest-to-rest maneuvering

problem, we assume that ul and us have the same number of pulses, (N + 1)/2, where

N is defined as in Fig. 6.

Substituting Eq. (44) into Eq. (43a) and solving for the time response of the rigid-

body mode, we get

1 N

yl(t __ tf) --" _" y_(-1)i[2tAj - 2tjAj - m_]
j=O

(45)

For the desired boundary condition, yl(t > tl) = 1, the following constraint must hold

N

'_(--1)iAj = 0 (46)
j=0

The positioning constraint for the rigid-body mode then becomes

N

Z(-1)_tzt_aj + _l + 4 = o (47)
j=O

13



Substituting Eq. (44) into Eq. (43b) and solving for the time response of the flexible

mode, we get

N

1cos,_tE[cos_t, - cost(t, + _,)]
y2(t)= -_ ,=0

1 N
- -sinwt y_[sinwtj - sinw(tj + A,)]

4 s=o

(4S)

for t > tj.

Also, rest-to-rest maneuvering requires y2(t) = 0 for t > tl; i.e., we have

N

_[cos_t, - cost(t, + a_)l = 0 (4oa)
j=0

N

_[sinwti - sinw(tj + A,)] = 0 (49b)
j=0

which become the no-vibration constraints for the rest-to-rest maneuvering problem.

Time-Optimal Control

Let the time-optimal control inputs for the rest-to-rest maneuver problem be of the

form

u, = u.(t) - ,,.(t - ,_)

_,_= - _,.(t - t,) + u,(t - t, - ix)

where each input has a single pulse with the same pulse width of A, tl is defined as

shown in Fig. 6, and the maneuver time t! = tl + A.

The rest-to-rest maneuver constraints can be obtained from Eqs. (47) and (49) as:

tS-(21/',)-/', =0 (50a)

sin(wts/2 ) + sin(w(A - t//2)) = 0 (50b)

which can be combined as:

sin(wA/2)cos(_/(2A)) = 0 (51)

The time-optimal solution can ;hen be obtained by solving the constrained mini-

mization problem:

rain J = tf = (2/A) + A (52)

14



subject to the constraint given by Eq. (51).

The solution of this problem can be found as

A = 0.9003

t! = 3.1218

The time responses of x2 to the time-optimal control inputs are shown in Fig. 7

for four different values of k. The maneuver time and control on-time are respectively

3.12 sec and 1.8 sec. As expected, the resulting responses are sensitive to parameter

variations.

Remark: A most interesting feature of this solution is that the overall input shape

shown in Fig. 7 is of a "bang-off-bang" type, resulting in the control on-time of 1.8 sec

which is different from the maneuver time t! of 3.12 sec. For Case 1 and a rigidized case

[3], both the maneuver time and control on-time are 4.218 sec and 2.828 sec, respectively.

Therefore, the actuator configuration for Case 2 is considered to be "optimal" in the

sense of minimizing both the maneuver time and control on-time.

Robust Time-Optimal Control

Similar to Case 1 in Section 2, we now consider the "robustification" of the time-

optimal solution obtained in the preceding section.

Letting the derivative of Eq. (48) with respect to ¢0 be zero, we get

N

dy.._ = _ lsinuat __.,[tjcos,otj -(t i + Aj)cosco(tj + Ai)]
dw 4

j=O

1 N

+ i coswt y'_[tj sin a_t., -(tj + Aj) sinw(tj + &j)]
j=O

=0 (53)

For this derivative to be zero for arbitary t >_ t f, we must have

N

cos,0t,- + Aj)cos,o(t,+ a,)l = 0
j=O

N

Y_[t isin_ti -(tj + Aj)sin_(t i + Ai) ] = 0
j=O

which is called the first-order robustness constraints.

(54a)

(54b)
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Taking the derivative of Eq. (48) r times with respect to w, we get the rth-order

robustness constraint equations for input pulse sequences as follows:

N

Z:[(t,)" _os_t, - (t, + A_)_"¢os_(tj + A,)] = 0 (55)
j--0

N

_[(tj) '_ sinwtj - (tj + Aj)" sinw(t_ + Aj)] = 0 (56)
j=0

for m = 1,2,...,r.

As an example, we consider the first-order robustness constraint, incorporated with

the rest-to-rest maneuver constraints, to construct robust time-optimal pulse sequences.

Assuming that each input has two pulses, we can represent the control inputs as follows:

u, = u.(t) - u.(t - A0)+ _,.(t- t_)

- u,(t - t2 - A_)

_ = - u.(t - t,) + u.(t - t, - A,) - u.(t - t3)

+ u.(t - t3 - A3)

(57a)

(57b)

in which we have seven unknowns to be determined, and tj and A., are defined as shown

in Fig. 6.

The robust time-optimal solution can then be obtained by solving the constrained

parameter optimization problem

subject to

rain J = t 3 + A 3 (58)

Ao-- At + As -- A3 + A4 = 0
3

E(-1)J[2tjaj + A_] + 4 = 0
j--O

3

_[_os,_j - cos,_(t,+ Aj)]= 0
j=O

3

y_Jsinwtj- sinw(tj + A_)] = 0
j=O

3

_[tj _s_tj -(tj + A_)¢os,4t_+ A,)] = 0
j=0

16



3

)-'_[t_ sinwt i -(t_ + A i) sinw(t j + Aj)] = 0
./=0

Aj >0; j=0,1,2,3

tl, t2, t3 > 0

The solution to this problem can be obtained as:

to = 0.0000,

tl = 2.3357,

t_ = 2.1132,

t3 = 4.4544,

Ao = 0.4274

A1 = 0.4329

A2 = 0.4329

A3 = 0.4274

(60)

The time responses of x2 to the robust time-optimal control inputs are shown in

Fig. 8 for four different values of k, It is seen that the robustness has been increased at

the expense of the increased maneuvering time of 4.882 sec, comparing with the ideal

minimum-time of 3.122 sec. However, note that the control on-time is only 1.721 sec,

compared to the control on-time of 1.8 sec of the ideal, time-optimal solution.

6. Conclusions

A new approach to the robust time-optimal control of uncertain flexible spacecraft

has been investigated. The unique feature of the proposed approach is the fairly straight-

forward incorporation of the robustness constraints into a standard parameter optimiza-

tion problem, where the objective function to be minimized is the maneuvering time.

The case with two one-sided control inputs has shown an interesting feature from the

viewpoint of "optimal" actuator placement for minimizing both the maneuver time and

control on-time.
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Figure 1: Generic model with a rigid-body mode and one flexible mode.
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Abstract

The problem of computing open-loop, on-off jet firing logic for flexible spacecraft in

the face of plant modeling uncertainty is investigated. The primary control objective

is to achieve a fast maneuvering time with a minimum of structural vibrations during

and/or after a maneuver. This paper is also concerned with the problem of selecting a

proper pair of jets for practical trade-offs among the maneuvering time, fuel consump-

tion, structural mode excitation, and performance robustness. A time-optimal control

problem subject to parameter robustness constraints is formulated. A three-mass-spring

model of flexible spacecraft with a rigid-body mode and two flexible modes is used to

illustrate the concept.
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1. Introduction

This paper deals with the problem of computing open-loop, on-off jet firing logic for

flexible spacecraft which are sometimes required to maneuver as quickly as possible with

a minimum of structural vibrations during and/or after a maneuver. Most standard time-

optimal control approaches to such a problem require an accurate mathematical model,

and thus the resulting solution becomes sensitive to variations in model parameters.

Expanding on the recent results of [1-2], we further explore the robust time-optimal

control problem of flexible spacecraft in the face of modeling uncertainty. In particular,

we study the problem of selecting a proper pair of jets for practical trade-offs among

the maneuvering time, fuel consumption, structural mode excitation, and performance

robustness. A parameter optimization approach, with additional constraints for per-

formance robustness with respect to modeling uncertainty, is employed to solve such

a robust time-optimal control problem. However, many theoretical and practical im-

plementation issues inherent to constrained parameter optimization problems are not

elaborated in this paper.

A simple math model of flexible spacecraft with a rigid-body mode and two flexible

modes, as shown in Fig. 1, is used to illustrate the concept and methodology. We consider

the case in which the structural flexibility and mass distribution of the vehicle are quite

uncertain, while the total mass (or inertia) of the vehicle is well known. Consequently, we

focus on the robust control problem of flexible spacecraft in the face of modal frequency

uncertainty as well as mode shape uncertainty.

Other robustified, open-loop approaches, however, attempt to find a smooth contin-

uous forcing function (e.g., a versine function) that begins and ends with zero slope.

The basic idea behind such approaches is that a smooth control input without sharp

transitions is less likely to excite structural modes during maneuvers. On the contrary

to such a common notion, the results of this paper indicate that properly modulated,

on-off pulse sequences can achieve a fast maneuvering time with a minimum of struc-

tural vibrations during and/or after a maneuver, even in the face of plant modeling

uncertainty.

The remainder of this paper is organized as follows. Section 2 describes the standard

time-optimal control problem of flexible spacecraft without modeling uncertainty. A
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parameter optimization problem is formulated, in which the objective function is the

maneuvering time. Three cases are explored, as illustrated in Fig. 1, in order to assess the

actuator placement problem for time-optimal control of flexible spacecraft with multiple

jets. In Section 3, we investigate the same problem as in Section 2 but considering the

presence of modeling uncertainty. A time-optimal control problem subject to additional

robustness (or sensitivity) constraints is formulated, and numerical solutions for three

cases are then compared with solutions obtained in Section 2.

2. Time-Optimal Rest-to-Rest Maneuver Control

Problem Formulation

Consider a flexible spacecraft described by

M$ + Kz = Gu (1)

where z is a generalized displacement vector, M a mass matrix, K a stiffness matrix, G

the control input distribution matrix, and u the control input vector.

Equation (1) is transformed into the modal equations:

Yl Jr _I "- _IlUl Jr _12U2 Jr _13U3

Y2 Jr t'M22_/2 -'- _21Ul Jr _22U2 "It"_23U3

: (2)

Jr tMnYn "-- _nlUl Jr _n2U2 Jr _n3U3

where yi is the ith modal coordinate, _i the i th modal frequency, _0 the modal input dis-

tribution coefficient, and n the number of modes considered in control design. Without

loss of generality, only three control inputs are considered in Eq. (2).

In this paper, we consider a simple model which is a generic representation of a

spacecraft with a rigid-body mode and two flexible modes, as shown in Fig. I. Three

cases are studied: (i) Case 1 with both "positive" and "negative" jets placed at body i,

(ii) Case 2 with a "positive" jet at body 1 and a "negative" jet at body 2, and (iii) Case

3 with a "positive" jet at body 1 and a "negative" jet at body 3. Case 1 is a typical

case in which two opposing jets are colocated. In Cases 2 and 3, two opposing jets are

not colocated.



For a classof problems,suchasCase1, the modal equationsbecome

_i+_yi=_iu; i=l,...,n

where _i the i th modal gain and the scalar control input u is bounded as

(3)

-1<u_<1 (4)

The problem is to find the control input u(t) which minimizes the performance index

= _o'tdt = t!J

subject to Eqs. (3) and (4), and given boundary conditions. The time-optimal bang-bang

solution of this problem with the rest-to-rest maneuvering boundary conditions has, in

most cases, (2n - 1) switches, and the solution is symmetric about the mid-maneuver

time tf/2 [2]. That is, for a case with (2n- 1) switches, we have the symmetric switching

pattern given as:

tj = t_, - t2,_-i; j = 1,...,n (.5)

where t) is the jth switching time and t2,_ = t I.

A bang-bang input with (2n - 1) switches is expressed as

2n

u(t) = _ B:uo(t- tj) (6)
j=0

where Bj is the magnitude of a unit step function u,(t) at t:. This function can be

characterized by its switch pattern as:

B={Bo, B1, B2,"', B2.}

T = { to, t,, t2, ".., t2. }

where B represents a set of B.i with Bo = B2,, = 4-1 and B: = 4-2 for j - 1,... ,2n - 1;

T represents a set of switching times (tl,-" -, t2,,-_) and the initial and final times (to = 0

and tl = _2,).

The rest-to-rest maneuvering constraint for the rigid-body mode (_, = 0) can be

found as
,£ 2n

__,(ti -tl)2B: - y,(tl) = 0 (7)
" j=O



The i th structural mode solution for the control input of Eq. (6) for t >_ t! is

_' _ Bjcos._,(t-tj)
yi(t) = - w-_7._=0

2n- - _,(t - t.) _ B, cos,;,(tj - t.)
COSt_i .1--0

2n

+ sin_,(t -t.) _ Bj sin_,(t, - t.)l
j=O

(s)

and it can be shown that the following constraint equation for each mode

2n

Bj sinw,(tj - t.) = 0 (9)

is always satisfied for any bang-bang input which is symmetric about the mid-maneuver

time t,_. Consequently, we have the following flexible mode constraints for no-residual

structural vibration (i.e., yi(t) = 0 for t >_ tl):

_n

Bj coswi(tj - t,,) = 0
j=O

(10)

for each flexible mode.

On the other hand, for Case 2 with the pulse sequences as illustrated in Fig. 2,

the boundary conditions of the rest-to-rest maneuvering problem result in the following

constraint:
N-1 N

¢,, _ Aj--¢,2 _ A./=0 (11)
j=0,2 j-l,3

where ell and ¢12 are the modal input distribution coefficients associated with the rigid-

body mode and the two control inputs ut and u2, and A i and N are defined as in Fig. 2.

The positioning constraint for the rigid-body mode, with specified yl(t >__tl), then

becomes

N-I

2y,(t:) - ¢,, E [2t;.,aj- ,_,.]
j=0,2

N

+ _,_ _ [2t,a, - ,_A= o
j=l,3

(12)

Also, rest-to-rest maneuvering requires that for each flexible mode, y_(t) = 0 for t > tl;

5



i.e., we have

where

N-1 N

- ¢. _ _, + ¢,_ _ c_j= o
j=0,2 jf1,3

N-I N

j=0,2 j=l,3

(13a)

(13b)

c_j= cos(_¢i) - cos(_(tj + ,xj))

% = sin(_itj) - sin(wi(tj + Aj))

for i = 2,..., n.

Remark: For cases in which the control inputs are one-sided, each control input for

the time-optimal solution need not be an odd function about the mid-maneuver time.

Thus, the problem with one-sided control inputs becomes more difficult to solve than

the standard problem with two-sided control inputs, and many theoretical issues (e.g.,

the uniqueness and structure of time-optimal solutions) need to be resolved.

We now present a detailed solution of each case.

Case 1 with a Two-Sided Control Input

In this case, as illustrated in Fig. 1, a two-sided control input is bounded as:

-l<u(t) <+1

and the equations of motion for this case are

ml_l + kl(zl - z2) = u

m2_2 + kl(z2 - zl) + k_(x2 - z3) = 0

m3_3 + k2(xs - z2) = 0

where zl, x2 and xs are the positions of body 1, body 2 and body 3, respectively, and

the nominal parameters are rat = rn2 = m3 = kl "- k2 = 1 with appropriate units, and

time is in units of second.

6



The boundary conditions for a rest-to-rest maneuverare givenas

• ,(0) = _2(0) = _3(0) = 0

• ,(tf) = x2(tj) = x3(tl) = x

&(0) = _(0) = _(0) = 0

_,(ts) = _2(t_) = _3(ts) = o

The modal equations are

_, = 0.3333u

_2 + _]y2 = 0.5u

2
Y3 + w3Y3 = - 0.1667u

where

w_ = [-b+ Cb 2 -4k, k2c]/2

b = -kl(ml + m2)rn3 - k2(rn2 + m3)ml

mlm2m3

c = (m, + .,_ + .',_)/(m,m_,'._)

and w2 = 1 rad/sec and w3 = _ rad/sec for the nominal system.

boundary conditions for the modal coordinates are

m(o) = y_(o)= yz(o)= o

_,(t_) = 1, y,(t_) = y_(ts) = o

y,(o) = i,2(o)= y3(o)= o

_,(t._)= y_(tl) = _(t:) = o

The time-optimal control input with 5 switchs is expressed as

u(t) = us(t) - 2u.(t - t,) + 2uo(t - t2) - 2u,(t - t3)

+ u.(t - t,) - u.(t - ts) + us(t - t6)

(14a)

(14b)

(14c)

(_4d)

(15a)

(15b)

(15c)

(16a)

(16b)

(16c)

(16d)

The corresponding

(17a)

(17b)

(17c)

(17d)

(is)



with the symmetry conditions

t6 = 2t3

ts = 2t3 -tl

t4 = 2t3 - t2

The time-optimal control problem is then formulated as the following constrained

minimization problem:

rnin J = t/= t_ = 2t3 (19)

subject to the following constraints:

$

6 -t_ + _(-1),+'[2(t_ - tj)2]= 0 (20)
5=1

2

1 + cos(w2t3)+ 2 y_(-1) j cos(w_(t3 -t_)) = 0
j=l

2

1+ cos(_3t3)+ 2_(-i)'_os(_3(t_-tj))= 0
j=l

it, t2, 13 > 0

A standard IMSL FORTRAN subroutine was used to obtain a solutionas:

(21)

(22)

(23)

u(t) = u,(t) - 2u,(t -0.944) + 2u,(t - 2.012)

- 2u,(t - 3.255) + u,(t - 4.499)

- u,(t- 5.567)+ u,(t- 6.511) (24)

The time responses of z3 to this time-optimal control input are shown in Fig. 3 for

four different values of k = kt = k2. We notice that the responses are quite sensitive to

variations in the model parameters. Similar responses can also be observed for arbitrarily

combined variations of ki and rai, but keeping the total mass constant (rn 1+ra2+ra3 = 3).

For convenience, simulation results only for k = kl = k2 variations are presented in this

paper.

Case 2 with Two One-Sided Control Inputs

For Case 2, as illustrated in Fig. 1, two one-sided control inputs are bounded as

O<ut<+l (25a)



-l_u_O

For this case, the time-optimal control inputs are assumed as:

,,, = u.(t) - ,,.(t - Ao)

+u.(t-t2)-u.(t-t2-A2)

,,_= - u.(t - t_)+ u.(t - t, - `5,)

- ,,.(t - t3)+ ,,.(t - t3- _x3)

The modal equations for this case are

tJl = 0.3333ul + 0.3333u2

172+ _o_y2 = 0.5ul

2
!73 + w3y3 = 0.1667ul - 0.3333u2

and the rest-to-rest maneuver constraints are

(25b)

(26a)

(26b)

(27a)

(27b)

(27c)

A0 - A1 + A2 - A3 = 0 (28a)
3

6 + y_,(-1)_[A] - 2t_A_] = 0 (28b)
j=O

[cos(_2t,)- cos(,_(tj + %))I = 0 (28¢)
_=,,3

[sin(w2tj)- sin(_,.,2(tj + Aj))] = 0 (28d)
j----l,3

[cos(,,,3tj)-cos(_3(t,+ exj))]
5--1,3

+ 2 _ [cos(w3tj) - cos(x3(t.i + at))] = 0 (28e)
j=O,2

[sin(w3tj)- sin(w3(t, + Aj))I
j=l,3

+ 2 Y_ [sin(w3t,,)- sin(_3(tj + A,))] = 0 (28f)
j =0,2

The time-optimal solution can then be obtained by solving the constrained minimization

problem:

rain J = t! = t3 + ,53 (29)

subject to the constraint given by Eqs. (28).



A solution of this problem can be found as

to = 0.0000,

tl - 1.1594,

t2 = 2.1455,

t3 = 4.3010,

t/= 5.3497

A0 = 0.8459

A, = 1.0487

A2 = 1.2516

A3 = 1.0487

(30)

,,, = u.(O - _,.(t- ,_o)

_,3= - u.(t - t,) + ,,.(t - t, - A,)

- u,(t - t_)+ u.(t - t_ - A_)

The modal equations for this case are

Yl = 0.3333(u, + u3)

i3 q- w32Y3 -- 0.1667(ul + u3)

and the rest-to-rest maneuver constraints are

Ao- At + A2- As = 0

10

(32a)

(32b)

(33a)

(33b)

(33c)

(34a)

The time responses of x3 to the time-optimal control inputs are shown in Fig. 4 for

four different values of k = kl = k2. Similar to Case 1, the responses are sensitive to

variations in the model parameters. An interesting feature of this case is that the pulse

sequences are of a _bang-off-bang" type, resulting in the control on-time of 4.195 sec,

which is different from the maneuver time of 5.35 sec.

Case 3 with Two One-Sided Control Inputs

For Case 3, as illustrated in Fig. 1, two one-sided control inputs are bounded as

0 < ul < +1 (31a)

- 1 <_ u3 _< 0 (31b)

Similar to Case 2, the time-optimal control inputs are assumed as:



3

6 + - 2t AA- 0 (34b)
j=O

3

_(-1)J[sin(w2tj) - sin(w2(tj + Aj))] = 0 (34c)
j=O

3

_"_.(-1)J[cos(w2t.i) - cos(w2(tj + Aj))] = 0 (34d)
j=O

3

_"_(-1)'/[sin(w3tj) - sin(w3(tj + Ai))] = 0 (34e)
./=0

3

_](-1)J[cos(w3tj) - cos(wz(t i + Ai))] = 0 (34f)
j=.0

t_,t2,t3,t4,ts > O; to =O

The time-optimal

mization problem:

rain J = t I = t3 + A3

subject to the constraints given by Eqs. (34).

A solution of this problem is

to = 0.0000,

tl = 1.3631,

ts = 2.8329,

t3 = 3.4109,

t/= 4.3619

solution can then be obtained by solving the constrained mini-

Ao = 0.9510

A1 = 0.1658

As = 0.1658

A3 = 0.9510

(35)

(36)

The time responses of x3 to the time-optimal control inputs are shown in Fig. 5 for

four different values of k = kt = ks. Again, the responses are quite sensitive to variations

in the model parameters. Similar to Case 2, an interesting feature of this case is that

the pulse sequences are of a "bang-off-bang" type, resulting in the control on-time of

2.234 see, which is different from the maneuver time of 4.362 see.

Compared to Case 1 and Case 2, this case has the fastest maneuver time as wel]_

as the smallest control on-time. Therefore, the actuator configuration of Case 3 can be

considered to be "optimal" in the sense of minimizing both the maneuver time and the

jet on-time.

11



3. Robust Time-Optimal Control

As shown in the preceding section, a standard, time-optimal control approach re-

quires an accurate mathematical model and thus the resulting solution is often sensitive

to plant modefing uncertainty.

In this section, expanding on the approach introduced in Section 2, a parameter

optimization problem is formulated with additional constraints for robustness with re-

spect to the structural frequency uncertainty. The resulting robustified or desensitized,

time-optimal soultion is a multi-switch bang-bang control, and is thus implementable

for spacecraft equipped with on-off reaction jets [3].

Problem Formulation

By taking the derivative of Eq. (8) with respect to wi, we get

dyi(t) ¢, _'(t-t') _'2"(t_ - tr)B_sin_'(ti - '' )'_2.., "_ -_
d._i = ¢0"7 cos j=0

(37)

for each flexiblemode. Letting dy{(t)/d_i- 0 for allt >_tl,we have

_'_(tj- )Bjcosw,(tj- )=O;i=2,...,n (38)
)=0

which are called the first-order robustness constraints for the case with a two-sided

control input.

Similarly, the robustness constraints for a case with two one-sided control inputs can

be found as:

where

N-I N

- _,, _ c,,+ _,__ c,,= o
.7=0,2 j=1,3

N-1 N

E E
j =0,2 .7= 1,3

(39a)

(39b)

c_j= t, cos(,,,,tj) - (tj + Aj) cos(_,(t, +/x_))

s,j = t_sin(witj) -(t/+ A./)sin(w,(t./+ Aj))

12



which are called the first-order robustness constraints for the case with two one-sided

control inputs.

Case 1 with a Two-Sided Control Input

For Case 1, the time-optimal control is a five-switch bang-bang function, but the

resulting responses were shown to be very sensitive to variations in model parameters.

A robustified, time-optimal solution of the same problem is now computed as follows.

The robust time-optimal control input is assumed as:

9

u(t) = u.(t) + 2}2[(-1)Ju.(t - tj)]+ _.(t - t,o) (40)
j=l

with the symmetry conditions

te = 2ts - t4

tr = 2ts - t3

ts = 2t5 - t2 (41)

t9 = 2ts - tl

ho = 2ts

The constrained optimization problem with the first-order robustness constraint can

be formulated as:

rain J = ty = tlo (42)

subject to

9

6 + _(-1 )"[2(tio - tj)2]- t_0= 0
,,i=l

4

1+ cos(_2ts)+ 2_[(-1)J cos(_(tj -tsll] = 0
.i=l

4

1+ cos(,_3t_)+ 2_[(-1): cos(_3(tj- t_))]= 0
j----l

4

ts sin(w2ts) + 2 _(-llJ(t: - ts) sin(w2(tj - tsl) = 0
j---I

4

t5 sin(_oats) + 2 _(-1)J(tj -- ts)sin(_a(tj -- ts)) = 0
j---I

tl,t2, t3, t4, ts >O; to=0

13



A robust time-optimal solution with 9 switchescanbe found as:

tl = 0.560, t2 = 1.460

t3 = 2.690, t4 = 3.804

ts = 5.091, t6 = 6.377

tr = 7.491, ts = 8.722

t9 = 9.622, tl0 = 10.18

(43)

The time responses of x3 to this robust time-optimal control input are shown in Fig. 6

for four different values of k = kl = k_. We notice that the resulting responses are less

sensitive to parameter variations, as compared to the responses to the ideal, time-optimal

control input, as shown in Fig. 3. The second flexible mode is significantly excited during

manuevers, however. Performance robustness has been increased at the expense of the

increased maneuvering time of 10.18 sec, as compared to the ideal minimum-time of 6.511

sec. It is, however, emphasized that simply prolonging the maneuver time does not help

to reduce residual structural vibrations caused by modeling uncertainty; a proper pulse

sequence is necessary.

Case 2 with Two One-Sided Control Inputs

For Case 2, we can represent the control inputs as follows:

,,, = ,,.(t) - ,,.(t - _o) + _,.(t - t_)

- ,,.(t - t=- ,_) + ,,.(t - t,) - ,,.(t - t, - A,)

_,_= - _.(t -t,) + ,,.(t - t, - :x,) - ,,.(t - t_)

+ ,,.(t - t_ - _3) - ,,.(t - t_)+ u.(t - t_ - .:x_)

where we have 11 unknowns to be determined, and t i and A+ are defined as in Fig. 2.

The robust time-optimal solution can then be obtained by solving the constrained

parameter optimization problem

rain J = tj = ts + As (44),

subject to

A 0 - A 1 + Aa - A s + A 4 - A s = 0

14



$

6 + Z(-1);?q - 2t,AA= 0
i--0

[_s(_tA - cos(_(ti + _1)] = 0
j=l,3

__, [sin(w2tj)- sin(w2(tj + Aj))] = 0
j=l,3

[¢os(.,3tA-cos(,_3(tj+ _x_))]
J'=1,3

+ 2 _ [¢os(_t,) - cosC,,,_(t_+ _))1 = 0
._=0,2,4

[sin(wztj)- sin(wz(tj + A.,))]
j=l,3

+ 2 __, [sin(wati) -sin(wa(t i + Aj))] = 0
j-----0,2,4

[tjcos(_2tj)-(t, + _x_)cos(_(t,+ _xj))]= 0
j=l,3

__, [tjsin(w2tj) -(t_ + Ai) sin(w2(t_ + A/))] = 0
j=l,3

[tjcos(,_3tj)-(t_+ _L)cos(_3(t_+ _x,))]
j----l,3

+ 2 __, [ticos(_zatj)-(t) + Aj)cos(w3(t i + A./))] =0
j=0,2,4

Y_ [t.isin(w3tj)-(tj + Aj) sin(to3(tj+ A.,))]
j=1,3

+ 2 __, [tjsin(w3tj) -(tj + A._) sin(_z3(tj + A3))] = 0
5=0,2,4

Ay__>O; j=0,1,2,3,4,5

tl, t;_, t3, t4, t5 > 0 ; to = 0

A solution to this problem is:

to

tl

t2

t3

t4

ts

tl

The time responses of xa to

Fig. 7 for four different values of

= 0.0000, Ao = 0.3855

= 0.4440, Al = 0.5783

=1.6118, A2= 1.4181

= 3.2990, A 3 = 1.2131

= 4.8208, A 4 = 0.5661

= 6.7887, A5 = 0.5783

= 7.3671

(45)

the robust time-optimal control inputs are shown in

k = kl = k_. Similar to Case 1 of the preceding section,

15



the robustnesshasbeenincreasedat the expenseof the increasedmaneuveringtime of

7.367sec,ascomparedto the ideal minimum-time of 5.35sec. The jet on-time is 4.195

see.The secondflexible modeis lessexcited, ascomparedto Case1.

Case 3 with Two One-Sided Control Inputs

Assuming that each control input has two pulses as in Case 2, we can represent the

control inputs as:

_,,= _,,(t)- u,(_- ,_o)+ ,.,,(t - t_)- ,,,(t - t, - _)

+ u,(t - t,) - ,_,(t- t, - ±,)

_,_= - u,(t - t,) + u,(t - t, - ,_,) - u,(t - t_)

+ uo(t - t3 - A3)- u°(t - ts) + u,(t - t, - As)

where we have 11 unknowns to be determined, and t s and Aj are defined as in Fig. 2.

The robust time-optimal solution can then be obtained by solving the constrained

parameter optimization problem

rain J = ts + As (47)

subject to

Ao-AI+,A,2-A3+A4 --AS -" 0

5

6 + y'_.(-1 )J[/k_ - 2/./A,] -- 0
j=O

5

_-'_.(-1)`4[sin(w2ti)- sin(_.,_(tj + Ai))] = 0
,;=0

5

_(-1 y[cos(_tj) - cos(,,.,_(t,+ ,_1)] = 0
./=0

$

_[(-11 j sin(cvstj) - sin(_s(t`4 + As)l ] = 0
j=O

5

_"_[(-1)'/cos(w3t_)- cos(_3(t`4 + A`4))] = 0
i=0

5

_(-1 y[t, cos,_tj- (t`4+ _`4)cos,_(t, + _`41]= 0
,4=0

16



5

_(-1)'_[ti sin w2tj- (tj + Aj) sin a_2(t._ + Ai) ] = 0
j---O

5

 (-llJ[t,  os 3t,- (t, + A,) cos 3(tj + AJll= 0
j=0

$

_"_(-1)J[tj sin w3tj - (tj + A./)sin w3(tj + A,)] = 0
tri0

A t_>0; j=0,1,2,3,4,5

tl, t2, t3, t4, t5 > 0; to = 0

A solution to this problem is

to = 0.000, Ao = 0.2189

tl = 3.774, A1 = 0.2609

t2 = 2.030, A2 = 0.3594

t3 = 5.778, A3 = 0.3594

t4 = 4.152, A4 = 0.2609

ts = 7.968, As = 0.2189

t I = 8.187

(48)

The time responses of z3 to the robust time-optimal control inputs are shown in Fig. 8

for four different values of k = k_ = k2. The robustness has been increased at the expense

of the increased maneuvering time of 8.187 sec, as compared to the ideal minimum-

time of 4.362 sec. However, the control on-time is only 1.678 seconds/ Because of the

properly coordinated pulse sequences, the flexible modes are not significantly excited

during manuevers and the residual responses after the maneuvers are well desensitized.

4. Summary

In this paper, we have demonstrated that the proposed robustification or desensitiza-

tion approach does generate robust time-optimal open-loop control inputs for uncertain

dynamical systems. Furthermore, on the contrary to a common notion, the results of

this paper indicate that properly coordinated, on-off pulse sequences can achieve a fast

maneuvering time with a minimum of structural vibrations during and/or after a ma-

neuver, even in the face of plant modeling uncertainty. The time-optimal responses

have been desensitized at the expense of the increased maneuvering time. It is again

emphasized that simply prolonging the maneuver time does not help to reduce residual
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structural vibrations causedby modeling uncertainty; a proper coordination of pulse

sequencesis necessary,asdemonstratedin this paper.

The results of this paper are summarizedin Table 1. As can be noticed in this

table, it is natural to selectthe actuator configurationof Case3, sincethis caseprovides

the "best" overall performancein the senseof minimizing the maneuvering time, fuel

consumption(jet on-time), and structural modeexcitation. For Case1,the maneuvering

time and thejet on-time arethe same,which is clearly undesirablefrom the viewpoint of

fuel consumption. To avoid suchundesirablecontinuousjet firings during a maneuver,

a robust fuel- and time-optimal control problem is formulatedin [4].

5. Conclusions

A time-optimal open-loop control problem of flexible spacecraft in the face of mod-

eling uncertainty has been investigated. The primary study objective was to explore

the feasibility of computing open-loop, on-off pulse control logic for uncertain flexible

spacecraft. The results indicate that the proposed approach significantly reduces the

residual structural vibrations caused by modeling uncertainty. The results also indicate

the importance of a proper jet placement for practical trade-offs among the maneuvering

time, fuel consumption, and performance robustness.
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Table I: Surmnary of the results

Case 1

Case 2
Case 3

Time-Optimal Control

J" = t/(_c)
6.511

5.350

4.362

Jet On-Time

6.511

4.195

2.234

Robust Time-Optimal Control

Jet On-Time

Case 1

Case 2

Case 3

J" = t/(sec)
10.18 10.18

7.367 4.739

8.187 1.678
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Figure 1: Three-mass-spring dynamical system.
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Figure 3: Responses of time-optimal control Case 1.
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Figure 2: Pulse sequences. Figure 4: Responses of time-optimal control Case 2.
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Figure 5: Responses of time-optimaJ control Case 3.
Figure 7: Responses of robust time-optimal control Case
2.
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Figure 6: Responses of robust time-optimal control Case
I. Figure 8: Responses of robust time-optimal control Case

3.
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